Minimum Distance between Bent and 1-Resilient Boolean Functions

نویسندگان

  • Soumen Maity
  • Subhamoy Maitra
چکیده

In this paper we study the minimum distance between the set of bent functions and the set of 1-resilient Boolean functions and present a lower bound on that. The bound is proved to be tight for functions up to 10 input variables. As a consequence, we present a strategy to modify the bent functions, by toggling some of its outputs, in getting a large class of 1-resilient functions with very good nonlinearity and autocorrelation. In particular, the technique is applied upto 12-variable functions and we show that the construction provides a large class of 1-resilient functions reaching currently best known nonlinearity and achieving very low autocorrelation values which were not known earlier. The technique is sound enough to theoretically solve some of the mysteries of 8-variable, 1-resilient functions with maximum possible nonlinearity. However, the situation becomes complicated from 10 variables and above, where we need to go for complicated combinatorial analysis with trial and error using computational facility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Distance between Bent and Resilient Boolean Functions

The minimum distance between Bent functions and Resilient functions is studied. An algorithm for calculating the minimum distance betw een Bent functions and resilient functions is given. We give a new lower bound for the minimum distance be tween Bent functions and 1 resilient functions. This new lower bound is better than that presented by S. Maity etc in 2004, and their conjectures are prove...

متن کامل

Construction of 1-Resilient Boolean Functions with Very Good Nonlinearity

In this paper we present a strategy to construct 1-resilient Boolean functions with very good nonlinearity and autocorrelation. Our strategy to construct a 1-resilient function is based on modifying a bent function, by toggling some of its output bits. Two natural questions that arise in this context are “at least how many bits and which bits in the output of a bent function need to be changed ...

متن کامل

A New Construction of Resilient Boolean Functions with High Nonlinearity

In this paper we develop a technique that allows us to obtain new effective construction of 1-resilient Boolean functions with very good nonlinearity and autocorrelation. Our strategy to construct a 1-resilient function is based on modifying a bent function, by toggling some of its output bits. Two natural questions that arise in this context are “at least how many bits and which bits in the ou...

متن کامل

On Dillon's class H of Niho bent functions and o-polynomials

Bent functions (Dillon 1974; Rothaus 1976) are extremal objects in combinatorics and Boolean function theory. They have been studied for about 40 years; even more, under the name of difference sets in elementary Abelian 2-groups. The motivation for the study of these particular difference sets is mainly cryptographic (but bent functions play also a role in coding theory and sequences; and as di...

متن کامل

On the Primary Constructions of Vectorial Boolean Bent Functions∗

Vectorial Boolean bent functions, which possess the maximal nonlinearity and the minimum differential uniformity, contribute to optimum resistance against linear cryptanalysis and differential cryptanalysis for the cryptographic algorithms that adopt them as nonlinear components. This paper is devoted to the new primary constructions of vectorial Boolean bent functions, including four types: ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 97  شماره 

صفحات  -

تاریخ انتشار 2003